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1. Introduction

• In the quest to build a programmable quantum simula-
tors with the capability to outperform classical hardware,
a careful design is of key importance. The underlying
architecture for embedding benchmark problems in the
D-Wave quantum annealer is Chimera topology.
•We study continuous-time quantum walk on the pla-

nar Chimera graph, Chimera-with-additional-connections
and the weak-strong cluster graph.
• The characterization and comparison of these graphs

show that the walker’s evolution strongly depends upon
the graph connectivity, the initial position and initial state
of the walker.
• This work can provide a useful insight about minimal

modification in Chimera graph connectivity that can max-
imally impact the computational performance.

2. Continuous-time quantum walks

• The evolution of the walker in continuous-time quantum
walks (CTQW) is described by Schrödinger equation

i
d

dt
|j〉 = Ĥ|j〉, (1)

where ~ = 1. The evolution of CTQW is described by a
N ×N Hamiltonian Ĥ, with elements

Hab =

−γ a 6= b, a and b are connected by an edge E
0 a 6= b, a and b are not connected
kγ a = b, k is the valence of vertex a,

(2)
where γ is the transmission rate.
• The transition amplitude αk,j(t) from state j at an initial

time t = 0 to state k at time t is

αk,j(t) = 〈k|e−iĤt|j〉. (3)

• The limiting probability gives the long time average of
πk,j(t) ≡ |αk,j(t)|2

χk,j ≡ lim
T→∞

1

T

∫ T

0
πk,j(t)dt. (4)

3. Chimera graph and related graphs

• An N ×N Chimera graph, noted as CN , consists of 8N2

vertices arranged as N2 complete bipartite graphs K4,4.
• Each unit cell consists of 8 vertices, 4 horizontal and 4

vertical. All vertices on the left are coupled to the ver-
tices on the right and vice versa.
• In between cells, each vertex on the left is furthermore

coupled vertically to the corresponding vertex in the unit
cell above and below, while each of the ones on the right
is horizontally coupled to the corresponding vertex in the
unit cells to the left and right, see Fig. 1(a).
• Periodic boundary condition Chimera graph.
•Weak-strong cluster graph, see Fig. 1(b).
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Figure 1: The structure of (a) Chimera graph and (b) Weak-
strong cluster graph.

4. The behavior of the walker

• If the walker is located on the left side vertex of the cell
at the initial moment, then after a period of walking, the
walker always occurs with a high probability at those ver-
tices which is connected with the initial vertex with a red
line.
• If the walker is located on the right side vertex of the

cell at the initial moment, then after a period of walking,
the walker always occurs with a high probability at those
vertices which is connected with the initial vertex with a
green line.
• If the walker is located on the superposition of left side

vertex and right side vertex, the walker always occurs
with a high probability at those vertices which is con-
nected with the initial superposition vertex with a red line
or a green line.
• If the initial position is not directly connected to another

vertex with the red line or the green line, the walker will
be localized, see Fig. 2(b).
•Here we give some snapshots of the probabilities πk,s

to be at time t = 6 at vertex k when starting at vertex
s = 1√

2
[(1, 1)+(10, 10)], see Fig. 2(a), 2(b), 2(c), Here time

is given in units of γ−1.
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Figure 2: (a)Snapshots of πk,s(t = 6) on chimera graph.
(b)Snapshots of πk,s(t = 6) on weak-strong cluster graph.
(c)Snapshots of πk,s(t = 6) on periodic boundary con-
dition chimera graph. (d)Snapshots of χk,s on chimera
graph. (e)Snapshots of χk,s on weak-strong cluster
graph. (f)Snapshots of χk,s on periodic boundary condition
chimera graph.

5. Limiting probabilities

• Starting in one vertex, the walker is distributed in units
connected with green line or red line depending on the
initial position directly connected with the green line or
the red line, and will be localized if neither case is satis-
fied.

• For open boundary chimera graph, the limiting probability
distribution pattern is mirror symmetric due to the sym-
metry of chimera graph, shown in fig. 3(a)

• For periodic boundary chimera graph, if the row number
is a multiple of 8 and the walker initialized in the left side
or the column number is a multiple of 4 and the walker ini-
tialized in the right side, the limiting probability distribution
has periodicity, shown in fig. 3(b). Otherwise, periodicity
does not occur, shown in fig. 3(c).
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Figure 3: (a)Snapshots of the limiting probabilities χk,c on
open boundary chimera graph (b)Snapshots of the limiting
probabilities χk,c on periodical boundary chimera graph with
periodicity (c)Snapshots of the limiting probabilities χk,c on
periodical boundary chimera graph without periodicity.

6. Conclusion

•We study quantum walk on Chimera graph which is im-
portant for performing quantum annealing, and we ex-
plore the nature of quantum walks on variants of Chimera
graph.

• Features of these quantum walks provide useful insight
into the nature of the Chimera graph, including greater
and lesser connectivity, isotropic spreading and localiza-
tion.

•We analyze finite-size effects due to limited width and
length of the graph. We explore the effects of different
boundary conditions such as periodic and reflecting ef-
fects are explained via spectral analysis.

• The properties of stationary states and spectral analy-
sis enables us to characterize asymptotic behavior of the
quantum walker.
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