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1. Introduction

•D-Wave quantum machine is the first commercially avail-
able quantum machine over the world. Many attempts
have been made to exploit whether there is a quantum
speedup in the machine, while until now the answer to it is
still elusive. It has been pointed out [1] that quantum an-
nealing might not have better performance of finding the
ground state than the classical corresponding algorithm
over the spin glass Ising problem, in which the coupling
strength of spins is randomly chosen from −1 or 1.
• So to show the advantage of the quantum finite range

tunneling in the computational process, a carefully
drafted problem, namely the weak-strong cluster prob-
lem [2], was proposed as a benchmark problem. This
specific problem has tall and narrow energy barriers sep-
arating local minima, so D-Wave 2X can achieve signifi-
cant runtime advantage over the the classical sequential
optimization methods. While, because of the sparse con-
nectivity of the D-Wave 2X architecture, some tailored
classical algorithms, like Hamze-de Freitas-Selby(HFS)
algorithm[3, 4] may excel in the scaling comparisons [5].
Here we will give a brief introduction to the problem they
studied and its quantum and classical solvers, and with
the comparison results, we can have a better understand-
ing of what this quantum machine’s computational value.

2. Weak-strong cluster problem

• The weak-strong cluster model is one of the tailored prob-
lem for the quantum optimizers. Here we introduce the
weak-strong clusters of 16 qubits in two unit cells. And
each cluster can coincide with a unit cell of the native
hardware Chimera graph. In Fig.1, the spins in the right
cluster are coupled to the “strong” external field (h2 =
−1). While, “weak” means the coupled external field in
the left is weak. Usually we take h1 = 0.44 < J

2 . The four
couplings between the two clusters are the same, J = 1
or J = −1, correspongding to the ferromagnetic or anti-
ferromagneticare coupling.

Figure 1: A pair of weak-strong clusters. The right eight
spins(in the dark dots) in the right are coupled with the ex-
ternal weak field. The left eight spins(in the grey dots) are
coupled with the external strong field. And the inner cou-
pling is set to J = 1.

• The Hamiltonian of the system is in Ising form

HP = H1 +H2 +H1,2 (1)
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• To make the problem bigger, each weak-strong clus-
ter can be used to build up the “weak-strong cluster
networks” problem in a glassy fashion, which means
the coupling between the neighbouring strong cluster
will be randomly chosen from +1(ferromagnetic) or -
1(antiferromagnetic).

3. Quantum Anealing

•D-Wave 2X is a quantum annealer that make the use of
the quantum annealing to solve the optimization prob-
lems. Many problems can be formed in the Ising formula-
tion. For example, a class of problems called quadratic
unconstrained binary optimization(QUBO) problem can
be embeded to the hardware topology with the help of
the minor-embedding technology
•Here is the model of the quantum annealing. With the as-

sistance of the x-direction tranverse magenetic field, the
time-dependent quantum Hamiltionian

H(t) = −A(t)HD +B(t)HP , t ∈ [0, ta] (4)

•Where HP is the Hamiltonian of the problem we want to
solve. And HD =

∑
i σ
x
i is the driver Hamiltonian, which

can flip the qubit and provide a source for quantum fluc-
tuations. So the annealing schedule will start with the
tranverse field term(i.e., B(0) = 0) whose ground state is
easily constructed, and end up with our problem term(i.e.,
A(ta) = 0) whose ground state is what we want. During
the annealing time, B(t) will increase meanwhile A(t) will
decrease.
• The solving process the the quantum annealing process,

which is a quantum analog of the classical annealing pro-
cess. The difference between them is that classical an-
nealing increases the temperature to hop up the solu-
tion escaping from the local optimal solution to the global
solution, while the quantum annealing using the quan-
tum tunneling to go through the energy barriers to get
the global optima. There are some discussions about
whether the D-Wave quantum annealer operates in the
quantum regime or in the classical evolution in these pa-
pers.

4. Hamze-de Freitas-Selby algorithm

•Hamze-de Freitas-Selby(HFS) algorithm is a subgraph-
based sampling algorithm. When sampling from the
Gibbs distribution, instead of updating one spin accord-
ing to its immediate neighbours at each run in the Markov
chain Monte Carlo(MCMC), Selby used an induced sub-
graph update method, which can be more efficient.

Figure 2: The Chimera graph with 8 × 8 big vertices. Ev-
ery four vertices in one side in Fig. 1 is combined as a big
vertex in this graph.

•Given a graph G, we will get a collection of induced sub-
graphs T1, ..., Tm that contain all edges of G. Another re-
striction is that ∪Ti = G so that every vertex and edge is
represented in some Ti.
• The idea is that the subgraph Ti of the graph should

be easily to solve exact. A good choice of the induced
subgraph could be the subgraphs of a given treewidth.
Treewidth of a graph is the minimum width over all possi-
ble tree-decompositons of the graph. When treewidth is
1, that means the subgraph is a tree.
• So given an induced subgraph, T , and a spin configura-

tion, SG\T = {Si | i ∈ G \ T} defined on the reminder

of G. So PT (· | SG\T ) is the probability conditioned on
SG\T .

• Then take T to be a random Ti from the subgraph collec-
tion and replace ST with a random configuration chosen
according to the conditional distribution PT (· | SG\T ). It
can be proved this kind of sampling method will satisfy
the detail balance[4].

•When dealing with the Chimera graph, he divided the bi-
partite graph K4,4 into its native to part: the left four ver-
tices as a big vertex, the same for the right four vertices.
Fig. 2 shows the big vertices connections of the Chimera
graph. Then the method mentioned above can be applied
to this big vertices graph.

•He showed the advantage over the single-site-update-
based sampling by testing different subgraphs with
treewidth of 1 and 2 combined with the ground state find-
ing method and the parallel tempering method.

5. Comparisons of the quantum and classical
solvers

• In [2], they only compared the quantum annealing with
its classical corresponding algorithm simulated anneal-
ing(SA)) and the Quantum Monte Carlo(QMC). And they
claimed D-Wave machine can be faster than the QMC
about eight orders of magnitude.

• In [5], they compared D-Wave 2X not only with SA and
QMC, but also with other classical method, like the hy-
brid cluster method(HCM), the isoenergetic cluster al-
gorithm(ICM), population annealing Monte Carlo, super-
spin heuristic(SS), and the HFS algorithm. They make
the conclusion that while D-Wave 2X has a better scal-
ing compared to SA and QMC, some other tailored and
nontailored algothms can show a better asympototic scal-
ing(see Fig. 3).

Figure 3: The computational scaling comparion
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