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Abstract

Passive optical interferometry with single photons injected into some input ports and vacuum into others is enriched by admitting polarization, thereby replacing the scalar electromagnetic
description by a vector theory, with the recent triad phase being a celebrated example of this richness. On the other hand, incorporating polarization into interferometry is known to be equivalent
to scalar theory if the number of channels is doubled. We show that passive multiphoton m-channel interferometry described by SU(m) transformations is replaced by SU(2m) interferometry
if polarization is included and thus that the multiphoton coincidence landscape, whose domain corresponds to various relative delays between photon arrival times, is fully explained by the
now-standard approach of using immanants to compute coincidence sampling probabilities. Consequently, we show that the triad phase is manifested simply as SU(6) interferometry with
three input photons, with one photon in each of three different input ports. Our analysis incorporates passive polarization multichannel interferometry into the existing scalar-field approach to
computing multiphoton coincidence probabilities in interferometry and demystifies the triad phase.

1. Motivation

Typically, multiphoton interference is treated as a scalar
field theory: polarization is ignored. Ignoring polarization is
not detrimental for studying multiphoton interferometry as
polarization can rather trivially be converted to a path de-
gree of freedom. Polarization is included inm-channel inter-
ferometry by combining a U(2) transformation with a U(m)
transformation, resulting in U(2m) irreps using the subchain

U(2m) ⊃ U(m)× U(2) (1)

transformation and the dual pair of U(2) and U(m) when
the same U(2) polarization transformation acts on all spa-
tial modes [2]. Dhand and Goyal decomposed arbitrary uni-
tary transformations for photonic states in terms of spatial
and internal modes [3]. Despite a mathematical equiva-
lence between polarization and path degrees of freedom,
some confusion has arisen about the sufficiency of mutual
photon distinguishability in explaining the features of coinci-
dence rates. A chief goal of our work is to show that polar-
ization degrees of freedom, independent for each physical
mode, are trivially absorbed into an SU(2m) transformation.

2. Group structure in the multiphoton interference

Two-photon interference has been studied extensively
since the celebrated 1987 Hong-Ou-Mandel (HOM) exper-
iment [4]. In the quantum description, the HOM dip corre-
sponds to a null coincidence for zero relative time delay:
the quantum mechanical description forbids each detec-
tor to see a photon when they are indistinguishable. For
long delays relative to the duration of the photonic wave
packet, each photon has a 50% chance of being reflected
or transmitted so the coincidence probably is one-half.

Figure 1: Two-photon interference at a beam-splitter

These two cases can be unified in the following Young dia-
gram:

⊗ = ⊕ (2)

When photons are indistinguishable, the main contribution
comes from the irreducible subspace , which means two
photons are symmetric under the permutation Sn. In the
other case, there are both contributions from and .
More specifically, if we assume the input photonic state at
each port as:

|Ψin〉 =

∫
dω1φ(ω1)e−iτ1ω1a

†
1(ω1)

∫
dω2φ(ω2)e−iτ2ω2a

†
2(ω2)

(3)

where τ is the time delay and φ(ω) is the frequency spectral.
With the measurement:

M =

∫
dω1ω2a

†
1(ω1)a

†
2(ω2) |0〉 〈0| a1(ω1)a2(ω2), (4)

the coincidence rate detected at the two output ports with
each occupied by one photon is:

C = 〈Ψout|M |Ψout〉 = ν†
[(

1 0
0 1

)
+ |β12(τ1, τ2)|2

(
1 0
0 −1

)]
ν

(5)

with |Ψout〉 = U |Ψin〉, ν† = 1√
2

(
permU detU

)
and U is the

scattering matrix of the interferometer. When the spectrum
overlap β between two photons is unity, i.e., the coincidence
is invariant under permutation of these two photons, the re-
sult only contains the permanent.
Above form gives us a systematic generalization from the
two-photon to high-order coincidence dips or peaks arises
from treating such scattering transformations as elements
of a unitary group [5–8]. With Schur-Weyl duality between
the symmetric group Sn of n objects and the unitary group
U(m) yields an immanant-based formalism that makes co-
incidence landscapes amenable to interpretations based on
permutational symmetries of photons described by Sn [9–
12]. Like the permanent accounting for the indistinguish-
ablity of photons, immanants naturally account for the par-
tial distinguishability of photons.
For the multiphoton case, the Young diagram equation can
also give us the direct way of decomposing the many-body
Hilbert space into each irreducible subspace. Here we take
the three photons as an example:

⊗ ⊗ = ⊕ ⊕ ⊕ (6)

In this case, the coincidence rate can be written:

C = ν†R(τ )ν (7)

with R called the rate matrix, a linear combination of matri-
ces of permutation operators. The weight of each permuta-
tion matrix is given by the overlap between the state and the
corresponding permuted state. When R is block diagonal-
ized by the conjugate class operator of Sn, each νi will be
a linear combination of the immanant in the corresponding
Sn irreducible representation, which is defined as

imm{λ }U =
∑
σ

χ{λ }(σ)
∏
i

Uiσ(i) (8)

As an example, when the photon number is 3, we can see
ν:
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(9)

3. From SU(m) to SU(2m)

When the polarization of photons is taken into considera-
tion, we can visually decompose the scattering matrix into
the polarization P and path scattering T parts:

U = TP (10)

with T the double of the original path scattering matrix T̃ as:

T =

(
T̃ 0

0 T̃

)
(11)

and

P = ⊕mi=1P
(i)
2×2 (12)

+

+

+

+

P T

Figure 2: Decomposition of interference network and setup
for the detectors.

The coincidence rate is different in different measure-
ment settings depending on whether the detectors are
polarization-sensitive or not. For the former case, the po-
larization degree of freedom then natually be absorbed as
a path degree of freedom in the scattering matrix. Then
the interferometer can be described as SU(2m) instead of
SU(m). We suppose the polarization is adjusted by the pa-
rameter θ, then the coincidence rate is

C = ν(θ)†R(τ )ν(θ) (13)

Othersize, the polarization has the same effect as the time
delay to change the photon’s indistinguishability in the rate
matrix:

C = ν†R(τ ,θ)ν (14)

As the permutation matrices are not affected by the intro-
duction of the polarization degree of freedom, block diag-
onalization of R(θ, τ ) yields the coincidence rate in terms
of immanants. In a generalization of previous results, the
distinguishability of a photon is not limited to the temporal
overlap of pulses but also include the polarization overlap.

4. Conclusion

We have described a model for polarized multiphoton inter-
ference in a generalized scattering interferometer, in which
the detectors are either polarization sensitive or insensitive.
In our model, polarization is merged into the transformation
network by doubling the ports to realize an SU(2m) trans-
formation. By changing polarizations, we consequently
change the scattering matrix.
Specifically, for polarization-insensitive detectors, the polar-
ization is merged into our rate matrix, then changing the
polarization is equivalently changing the photons’ distin-
guishabilities. We have shown that the two-photon pairwise
distinguishabilities, which include the information about the
independent parameters τ and θ, already suffice to de-
scribe the multiphoton interference.
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